李宏毅机器学习课程笔记EP15

【HW5】Transformer0.0李宏毅2021/2022春机器学习课程笔记EP15(P54-P57)

从今天开始我将学习李宏毅教授的机器学习视频,下面是课程的连接(强推)李宏毅2021/2022春机器学习课程_哔哩哔哩_bilibili。一共有155个视频,争取都学习完成吧。

那么首先这门课程需要有一定的代码基础,简单学习一下Python的基本用法,还有里面的NumPy库等等的基本知识。再就是数学方面的基础啦,微积分、线性代数和概率论的基础都是听懂这门课必须的。


u1s1,作业五的代码一直没有搞懂,这里先直接放一个助教的.ipynb。

Download and import required packages

!pip install 'torch>=1.6.0' editdistance matplotlib sacrebleu sacremoses sentencepiece tqdm wandb
!pip install --upgrade jupyter ipywidgets
!git clone https://github.com/pytorch/fairseq.git
!cd fairseq && git checkout 9a1c497
!pip install --upgrade ./fairseq/
import sys
import pdb
import pprint
import logging
import os
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
import tqdm.auto as tqdm
from pathlib import Path
from argparse import Namespace
from fairseq import utils

import matplotlib.pyplot as plt

Fix random seed

seed = 33
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  
np.random.seed(seed)  
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

Dataset

En-Zh Bilingual Parallel Corpus

TED2020

    – Raw: 400,726 (sentences)  

    – Processed: 394,052 (sentences)

Testdata

– Size: 4,000 (sentences)

**Chinese translation is undisclosed. The provided (.zh) file is psuedo translation, each line is a ‘。’**

Dataset Download

data_dir = './DATA/rawdata'
dataset_name = 'ted2020'
urls = (
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ml2023.hw5.data.tgz",
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ml2023.hw5.test.tgz"
)
file_names = (
    'ted2020.tgz', # train & dev
    'test.tgz', # test
)
prefix = Path(data_dir).absolute() / dataset_name

prefix.mkdir(parents=True, exist_ok=True)
for u, f in zip(urls, file_names):
    path = prefix/f
    if not path.exists():
        !wget {u} -O {path}
    if path.suffix == ".tgz":
        !tar -xvf {path} -C {prefix}
    elif path.suffix == ".zip":
        !unzip -o {path} -d {prefix}
!mv {prefix/'raw.en'} {prefix/'train_dev.raw.en'}
!mv {prefix/'raw.zh'} {prefix/'train_dev.raw.zh'}
!mv {prefix/'test.en'} {prefix/'test.raw.en'}
!mv {prefix/'test.zh'} {prefix/'test.raw.zh'}

Language

src_lang = 'en'
tgt_lang = 'zh'

data_prefix = f'{prefix}/train_dev.raw'
test_prefix = f'{prefix}/test.raw'
!head {data_prefix+'.'+src_lang} -n 5
!head {data_prefix+'.'+tgt_lang} -n 5

Preprocess files

import re

def strQ2B(ustring):
    """Full width -> half width"""
    # reference:https://ithelp.ithome.com.tw/articles/10233122
    ss = []
    for s in ustring:
        rstring = ""
        for uchar in s:
            inside_code = ord(uchar)
            if inside_code == 12288:  # Full width space: direct conversion
                inside_code = 32
            elif (inside_code >= 65281 and inside_code <= 65374):  # Full width chars (except space) conversion
                inside_code -= 65248
            rstring += chr(inside_code)
        ss.append(rstring)
    return ''.join(ss)
                
def clean_s(s, lang):
    if lang == 'en':
        s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
        s = s.replace('-', '') # remove '-'
        s = re.sub('([.,;!?()\"])', r' \1 ', s) # keep punctuation
    elif lang == 'zh':
        s = strQ2B(s) # Q2B
        s = re.sub(r"\([^()]*\)", "", s) # remove ([text])
        s = s.replace(' ', '')
        s = s.replace('—', '')
        s = s.replace('“', '"')
        s = s.replace('”', '"')
        s = s.replace('_', '')
        s = re.sub('([。,;!?()\"~「」])', r' \1 ', s) # keep punctuation
    s = ' '.join(s.strip().split())
    return s

def len_s(s, lang):
    if lang == 'zh':
        return len(s)
    return len(s.split())

def clean_corpus(prefix, l1, l2, ratio=9, max_len=1000, min_len=1):
    if Path(f'{prefix}.clean.{l1}').exists() and Path(f'{prefix}.clean.{l2}').exists():
        print(f'{prefix}.clean.{l1} & {l2} exists. skipping clean.')
        return
    with open(f'{prefix}.{l1}', 'r') as l1_in_f:
        with open(f'{prefix}.{l2}', 'r') as l2_in_f:
            with open(f'{prefix}.clean.{l1}', 'w') as l1_out_f:
                with open(f'{prefix}.clean.{l2}', 'w') as l2_out_f:
                    for s1 in l1_in_f:
                        s1 = s1.strip()
                        s2 = l2_in_f.readline().strip()
                        s1 = clean_s(s1, l1)
                        s2 = clean_s(s2, l2)
                        s1_len = len_s(s1, l1)
                        s2_len = len_s(s2, l2)
                        if min_len > 0: # remove short sentence
                            if s1_len < min_len or s2_len < min_len:
                                continue
                        if max_len > 0: # remove long sentence
                            if s1_len > max_len or s2_len > max_len:
                                continue
                        if ratio > 0: # remove by ratio of length
                            if s1_len/s2_len > ratio or s2_len/s1_len > ratio:
                                continue
                        print(s1, file=l1_out_f)
                        print(s2, file=l2_out_f)
clean_corpus(data_prefix, src_lang, tgt_lang)
clean_corpus(test_prefix, src_lang, tgt_lang, ratio=-1, min_len=-1, max_len=-1)
!head {data_prefix+'.clean.'+src_lang} -n 5
!head {data_prefix+'.clean.'+tgt_lang} -n 5

Split into train/valid

valid_ratio = 0.01 # 3000~4000 would suffice
train_ratio = 1 - valid_ratio
if (prefix/f'train.clean.{src_lang}').exists() \
and (prefix/f'train.clean.{tgt_lang}').exists() \
and (prefix/f'valid.clean.{src_lang}').exists() \
and (prefix/f'valid.clean.{tgt_lang}').exists():
    print(f'train/valid splits exists. skipping split.')
else:
    line_num = sum(1 for line in open(f'{data_prefix}.clean.{src_lang}'))
    labels = list(range(line_num))
    random.shuffle(labels)
    for lang in [src_lang, tgt_lang]:
        train_f = open(os.path.join(data_dir, dataset_name, f'train.clean.{lang}'), 'w')
        valid_f = open(os.path.join(data_dir, dataset_name, f'valid.clean.{lang}'), 'w')
        count = 0
        for line in open(f'{data_prefix}.clean.{lang}', 'r'):
            if labels[count]/line_num < train_ratio:
                train_f.write(line)
            else:
                valid_f.write(line)
            count += 1
        train_f.close()
        valid_f.close()

Subword Units

Out of vocabulary (OOV) has been a major problem in machine translation. This can be alleviated by using subword units.

– We will use the [sentencepiece](#kudo-richardson-2018-sentencepiece) package

– select ‘unigram’ or ‘byte-pair encoding (BPE)’ algorithm

import sentencepiece as spm
vocab_size = 8000
if (prefix/f'spm{vocab_size}.model').exists():
    print(f'{prefix}/spm{vocab_size}.model exists. skipping spm_train.')
else:
    spm.SentencePieceTrainer.train(
        input=','.join([f'{prefix}/train.clean.{src_lang}',
                        f'{prefix}/valid.clean.{src_lang}',
                        f'{prefix}/train.clean.{tgt_lang}',
                        f'{prefix}/valid.clean.{tgt_lang}']),
        model_prefix=prefix/f'spm{vocab_size}',
        vocab_size=vocab_size,
        character_coverage=1,
        model_type='unigram', # 'bpe' works as well
        input_sentence_size=1e6,
        shuffle_input_sentence=True,
        normalization_rule_name='nmt_nfkc_cf',
    )
spm_model = spm.SentencePieceProcessor(model_file=str(prefix/f'spm{vocab_size}.model'))
in_tag = {
    'train': 'train.clean',
    'valid': 'valid.clean',
    'test': 'test.raw.clean',
}
for split in ['train', 'valid', 'test']:
    for lang in [src_lang, tgt_lang]:
        out_path = prefix/f'{split}.{lang}'
        if out_path.exists():
            print(f"{out_path} exists. skipping spm_encode.")
        else:
            with open(prefix/f'{split}.{lang}', 'w') as out_f:
                with open(prefix/f'{in_tag[split]}.{lang}', 'r') as in_f:
                    for line in in_f:
                        line = line.strip()
                        tok = spm_model.encode(line, out_type=str)
                        print(' '.join(tok), file=out_f)
!head {data_dir+'/'+dataset_name+'/train.'+src_lang} -n 5
!head {data_dir+'/'+dataset_name+'/train.'+tgt_lang} -n 5

Binarize the data with fairseq

Prepare the files in pairs for both the source and target languages.

In case a pair is unavailable, generate a pseudo pair to facilitate binarization.

binpath = Path('./DATA/data-bin', dataset_name)
if binpath.exists():
    print(binpath, "exists, will not overwrite!")
else:
    !python -m fairseq_cli.preprocess \
        --source-lang {src_lang}\
        --target-lang {tgt_lang}\
        --trainpref {prefix/'train'}\
        --validpref {prefix/'valid'}\
        --testpref {prefix/'test'}\
        --destdir {binpath}\
        --joined-dictionary\
        --workers 2

Configuration for experiments

config = Namespace(
    datadir = "./DATA/data-bin/ted2020",
    savedir = "./checkpoints/rnn",
    source_lang = src_lang,
    target_lang = tgt_lang,
    
    # cpu threads when fetching & processing data.
    num_workers=2,  
    # batch size in terms of tokens. gradient accumulation increases the effective batchsize.
    max_tokens=8192,
    accum_steps=2,
    
    # the lr s calculated from Noam lr scheduler. you can tune the maximum lr by this factor.
    lr_factor=2.,
    lr_warmup=4000,
    
    # clipping gradient norm helps alleviate gradient exploding
    clip_norm=1.0,
    
    # maximum epochs for training
    max_epoch=15,
    start_epoch=1,
    
    # beam size for beam search
    beam=5, 
    # generate sequences of maximum length ax + b, where x is the source length
    max_len_a=1.2, 
    max_len_b=10, 
    # when decoding, post process sentence by removing sentencepiece symbols and jieba tokenization.
    post_process = "sentencepiece",
    
    # checkpoints
    keep_last_epochs=5,
    resume=None, # if resume from checkpoint name (under config.savedir)
    
    # logging
    use_wandb=False,
)

Logging

– logging package logs ordinary messages

– wandb logs the loss, bleu, etc. in the training process

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level="INFO", # "DEBUG" "WARNING" "ERROR"
    stream=sys.stdout,
)
proj = "hw5.seq2seq"
logger = logging.getLogger(proj)
if config.use_wandb:
    import wandb
    wandb.init(project=proj, name=Path(config.savedir).stem, config=config)

CUDA Environments

cuda_env = utils.CudaEnvironment()
utils.CudaEnvironment.pretty_print_cuda_env_list([cuda_env])
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

Dataloading

We borrow the TranslationTask from fairseq

used to load the binarized data created above

well-implemented data iterator (dataloader)

built-in task.source_dictionary and task.target_dictionary are also handy

well-implemented beach search decoder

from fairseq.tasks.translation import TranslationConfig, TranslationTask

## setup task
task_cfg = TranslationConfig(
    data=config.datadir,
    source_lang=config.source_lang,
    target_lang=config.target_lang,
    train_subset="train",
    required_seq_len_multiple=8,
    dataset_impl="mmap",
    upsample_primary=1,
)
task = TranslationTask.setup_task(task_cfg)
logger.info("loading data for epoch 1")
task.load_dataset(split="train", epoch=1, combine=True) # combine if you have back-translation data.
task.load_dataset(split="valid", epoch=1)
sample = task.dataset("valid")[1]
pprint.pprint(sample)
pprint.pprint(
    "Source: " + \
    task.source_dictionary.string(
        sample['source'],
        config.post_process,
    )
)
pprint.pprint(
    "Target: " + \
    task.target_dictionary.string(
        sample['target'],
        config.post_process,
    )
)

Dataset iterator

* Controls every batch to contain no more than N tokens, which optimizes GPU memory efficiency

* Shuffles the training set for every epoch

* Ignore sentences exceeding maximum length

* Pad all sentences in a batch to the same length, which enables parallel computing by GPU

* Add eos and shift one token

    – teacher forcing: to train the model to predict the next token based on prefix, we feed the right shifted target sequence as the decoder input.

    – generally, prepending bos to the target would do the job (as shown below)

![seq2seq](https://i.imgur.com/0zeDyuI.png)

    – in fairseq however, this is done by moving the eos token to the begining. Empirically, this has the same effect. For instance:

    “`

    # output target (target) and Decoder input (prev_output_tokens):

                   eos = 2

                target = 419,  711,  238,  888,  792,   60,  968,    8,    2

    prev_output_tokens = 2,  419,  711,  238,  888,  792,   60,  968,    8

    “`

def load_data_iterator(task, split, epoch=1, max_tokens=4000, num_workers=1, cached=True):
    batch_iterator = task.get_batch_iterator(
        dataset=task.dataset(split),
        max_tokens=max_tokens,
        max_sentences=None,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            max_tokens,
        ),
        ignore_invalid_inputs=True,
        seed=seed,
        num_workers=num_workers,
        epoch=epoch,
        disable_iterator_cache=not cached,
        # Set this to False to speed up. However, if set to False, changing max_tokens beyond 
        # first call of this method has no effect. 
    )
    return batch_iterator

demo_epoch_obj = load_data_iterator(task, "valid", epoch=1, max_tokens=20, num_workers=1, cached=False)
demo_iter = demo_epoch_obj.next_epoch_itr(shuffle=True)
sample = next(demo_iter)
sample

* each batch is a python dict, with string key and Tensor value. Contents are described below:

“`python

batch = {

    “id”: id, # id for each example

    “nsentences”: len(samples), # batch size (sentences)

    “ntokens”: ntokens, # batch size (tokens)

    “net_input”: {

        “src_tokens”: src_tokens, # sequence in source language

        “src_lengths”: src_lengths, # sequence length of each example before padding

        “prev_output_tokens”: prev_output_tokens, # right shifted target, as mentioned above.

    },

    “target”: target, # target sequence

}

“`

Model Architecture

* We again inherit fairseq’s encoder, decoder and model, so that in the testing phase we can directly leverage fairseq’s beam search decoder.

from fairseq.models import (
    FairseqEncoder, 
    FairseqIncrementalDecoder,
    FairseqEncoderDecoderModel
)

Encoder

– The Encoder is a RNN or Transformer Encoder. The following description is for RNN. For every input token, Encoder will generate a output vector and a hidden states vector, and the hidden states vector is passed on to the next step. In other words, the Encoder sequentially reads in the input sequence, and outputs a single vector at each timestep, then finally outputs the final hidden states, or content vector, at the last timestep.

– Parameters:

  – *args*

      – encoder_embed_dim: the dimension of embeddings, this compresses the one-hot vector into fixed dimensions, which achieves dimension reduction

      – encoder_ffn_embed_dim is the dimension of hidden states and output vectors

      – encoder_layers is the number of layers for Encoder RNN

      – dropout determines the probability of a neuron’s activation being set to 0, in order to prevent overfitting. Generally this is applied in training, and removed in testing.

  – *dictionary*: the dictionary provided by fairseq. it’s used to obtain the padding index, and in turn the encoder padding mask.

  – *embed_tokens*: an instance of token embeddings (nn.Embedding)

– Inputs:

    – *src_tokens*: integer sequence representing english e.g. 1, 28, 29, 205, 2

– Outputs:

    – *outputs*: the output of RNN at each timestep, can be furthur processed by Attention

    – *final_hiddens*: the hidden states of each timestep, will be passed to decoder for decoding

    – *encoder_padding_mask*: this tells the decoder which position to ignore

class RNNEncoder(FairseqEncoder):
    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.embed_tokens = embed_tokens
        
        self.embed_dim = args.encoder_embed_dim
        self.hidden_dim = args.encoder_ffn_embed_dim
        self.num_layers = args.encoder_layers
        
        self.dropout_in_module = nn.Dropout(args.dropout)
        self.rnn = nn.GRU(
            self.embed_dim, 
            self.hidden_dim, 
            self.num_layers, 
            dropout=args.dropout, 
            batch_first=False, 
            bidirectional=True
        )
        self.dropout_out_module = nn.Dropout(args.dropout)
        
        self.padding_idx = dictionary.pad()
        
    def combine_bidir(self, outs, bsz: int):
        out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous()
        return out.view(self.num_layers, bsz, -1)

    def forward(self, src_tokens, **unused):
        bsz, seqlen = src_tokens.size()
        
        # get embeddings
        x = self.embed_tokens(src_tokens)
        x = self.dropout_in_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)
        
        # pass thru bidirectional RNN
        h0 = x.new_zeros(2 * self.num_layers, bsz, self.hidden_dim)
        x, final_hiddens = self.rnn(x, h0)
        outputs = self.dropout_out_module(x)
        # outputs = [sequence len, batch size, hid dim * directions]
        # hidden =  [num_layers * directions, batch size  , hid dim]
        
        # Since Encoder is bidirectional, we need to concatenate the hidden states of two directions
        final_hiddens = self.combine_bidir(final_hiddens, bsz)
        # hidden =  [num_layers x batch x num_directions*hidden]
        
        encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
        return tuple(
            (
                outputs,  # seq_len x batch x hidden
                final_hiddens,  # num_layers x batch x num_directions*hidden
                encoder_padding_mask,  # seq_len x batch
            )
        )
    
    def reorder_encoder_out(self, encoder_out, new_order):
        # This is used by fairseq's beam search. How and why is not particularly important here.
        return tuple(
            (
                encoder_out[0].index_select(1, new_order),
                encoder_out[1].index_select(1, new_order),
                encoder_out[2].index_select(1, new_order),
            )
        )

Attention

– When the input sequence is long, “content vector” alone cannot accurately represent the whole sequence, attention mechanism can provide the Decoder more information.
– According to the **Decoder embeddings** of the current timestep, match the **Encoder outputs** with decoder embeddings to determine correlation, and then sum the Encoder outputs weighted by the correlation as the input to **Decoder** RNN.
– Common attention implementations use neural network / dot product as the correlation between **query** (decoder embeddings) and **key** (Encoder outputs), followed by **softmax** to obtain a distribution, and finally **values** (Encoder outputs) is **weighted sum**-ed by said distribution.

– Parameters:
– *input_embed_dim*: dimensionality of key, should be that of the vector in decoder to attend others
– *source_embed_dim*: dimensionality of query, should be that of the vector to be attended to (encoder outputs)
– *output_embed_dim*: dimensionality of value, should be that of the vector after attention, expected by the next layer

– Inputs:
– *inputs*: is the key, the vector to attend to others
– *encoder_outputs*: is the query/value, the vector to be attended to
– *encoder_padding_mask*: this tells the decoder which position to ignore
– Outputs:
– *output*: the context vector after attention
– *attention score*: the attention distribution

class AttentionLayer(nn.Module):
    def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False):
        super().__init__()

        self.input_proj = nn.Linear(input_embed_dim, source_embed_dim, bias=bias)
        self.output_proj = nn.Linear(
            input_embed_dim + source_embed_dim, output_embed_dim, bias=bias
        )

    def forward(self, inputs, encoder_outputs, encoder_padding_mask):
        # inputs: T, B, dim
        # encoder_outputs: S x B x dim
        # padding mask:  S x B
        
        # convert all to batch first
        inputs = inputs.transpose(1,0) # B, T, dim
        encoder_outputs = encoder_outputs.transpose(1,0) # B, S, dim
        encoder_padding_mask = encoder_padding_mask.transpose(1,0) # B, S
        
        # project to the dimensionality of encoder_outputs
        x = self.input_proj(inputs)

        # compute attention
        # (B, T, dim) x (B, dim, S) = (B, T, S)
        attn_scores = torch.bmm(x, encoder_outputs.transpose(1,2))

        # cancel the attention at positions corresponding to padding
        if encoder_padding_mask is not None:
            # leveraging broadcast  B, S -> (B, 1, S)
            encoder_padding_mask = encoder_padding_mask.unsqueeze(1)
            attn_scores = (
                attn_scores.float()
                .masked_fill_(encoder_padding_mask, float("-inf"))
                .type_as(attn_scores)
            )  # FP16 support: cast to float and back

        # softmax on the dimension corresponding to source sequence
        attn_scores = F.softmax(attn_scores, dim=-1)

        # shape (B, T, S) x (B, S, dim) = (B, T, dim) weighted sum
        x = torch.bmm(attn_scores, encoder_outputs)

        # (B, T, dim)
        x = torch.cat((x, inputs), dim=-1)
        x = torch.tanh(self.output_proj(x)) # concat + linear + tanh
        
        # restore shape (B, T, dim) -> (T, B, dim)
        return x.transpose(1,0), attn_scores

Decoder

* The hidden states of **Decoder** will be initialized by the final hidden states of **Encoder** (the content vector)

* At the same time, **Decoder** will change its hidden states based on the input of the current timestep (the outputs of previous timesteps), and generates an output

* Attention improves the performance

* The seq2seq steps are implemented in decoder, so that later the Seq2Seq class can accept RNN and Transformer, without furthur modification.

– Parameters:

  – *args*

      – decoder_embed_dim: is the dimensionality of the decoder embeddings, similar to encoder_embed_dim,

      – decoder_ffn_embed_dim: is the dimensionality of the decoder RNN hidden states, similar to encoder_ffn_embed_dim

      – decoder_layers: number of layers of RNN decoder

      – share_decoder_input_output_embed: usually, the projection matrix of the decoder will share weights with the decoder input embeddings

  – *dictionary*: the dictionary provided by fairseq

  – *embed_tokens*: an instance of token embeddings (nn.Embedding)

– Inputs:

    – *prev_output_tokens*: integer sequence representing the right-shifted target e.g. 1, 28, 29, 205, 2

    – *encoder_out*: encoder’s output.

    – *incremental_state*: in order to speed up decoding during test time, we will save the hidden state of each timestep. see forward() for details.

– Outputs:

    – *outputs*: the logits (before softmax) output of decoder for each timesteps

    – *extra*: unsused

class RNNDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.embed_tokens = embed_tokens
        
        assert args.decoder_layers == args.encoder_layers, f"""seq2seq rnn requires that encoder 
        and decoder have same layers of rnn. got: {args.encoder_layers, args.decoder_layers}"""
        assert args.decoder_ffn_embed_dim == args.encoder_ffn_embed_dim*2, f"""seq2seq-rnn requires 
        that decoder hidden to be 2*encoder hidden dim. got: {args.decoder_ffn_embed_dim, args.encoder_ffn_embed_dim*2}"""
        
        self.embed_dim = args.decoder_embed_dim
        self.hidden_dim = args.decoder_ffn_embed_dim
        self.num_layers = args.decoder_layers
        
        
        self.dropout_in_module = nn.Dropout(args.dropout)
        self.rnn = nn.GRU(
            self.embed_dim, 
            self.hidden_dim, 
            self.num_layers, 
            dropout=args.dropout, 
            batch_first=False, 
            bidirectional=False
        )
        self.attention = AttentionLayer(
            self.embed_dim, self.hidden_dim, self.embed_dim, bias=False
        ) 
        # self.attention = None
        self.dropout_out_module = nn.Dropout(args.dropout)
        
        if self.hidden_dim != self.embed_dim:
            self.project_out_dim = nn.Linear(self.hidden_dim, self.embed_dim)
        else:
            self.project_out_dim = None
        
        if args.share_decoder_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )
        
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None, **unused):
        # extract the outputs from encoder
        encoder_outputs, encoder_hiddens, encoder_padding_mask = encoder_out
        # outputs:          seq_len x batch x num_directions*hidden
        # encoder_hiddens:  num_layers x batch x num_directions*encoder_hidden
        # padding_mask:     seq_len x batch
        
        if incremental_state is not None and len(incremental_state) > 0:
            # if the information from last timestep is retained, we can continue from there instead of starting from bos
            prev_output_tokens = prev_output_tokens[:, -1:]
            cache_state = self.get_incremental_state(incremental_state, "cached_state")
            prev_hiddens = cache_state["prev_hiddens"]
        else:
            # incremental state does not exist, either this is training time, or the first timestep of test time
            # prepare for seq2seq: pass the encoder_hidden to the decoder hidden states
            prev_hiddens = encoder_hiddens
        
        bsz, seqlen = prev_output_tokens.size()
        
        # embed tokens
        x = self.embed_tokens(prev_output_tokens)
        x = self.dropout_in_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)
                
        # decoder-to-encoder attention
        if self.attention is not None:
            x, attn = self.attention(x, encoder_outputs, encoder_padding_mask)
                        
        # pass thru unidirectional RNN
        x, final_hiddens = self.rnn(x, prev_hiddens)
        # outputs = [sequence len, batch size, hid dim]
        # hidden =  [num_layers * directions, batch size  , hid dim]
        x = self.dropout_out_module(x)
                
        # project to embedding size (if hidden differs from embed size, and share_embedding is True, 
        # we need to do an extra projection)
        if self.project_out_dim != None:
            x = self.project_out_dim(x)
        
        # project to vocab size
        x = self.output_projection(x)
        
        # T x B x C -> B x T x C
        x = x.transpose(1, 0)
        
        # if incremental, record the hidden states of current timestep, which will be restored in the next timestep
        cache_state = {
            "prev_hiddens": final_hiddens,
        }
        self.set_incremental_state(incremental_state, "cached_state", cache_state)
        
        return x, None
    
    def reorder_incremental_state(
        self,
        incremental_state,
        new_order,
    ):
        # This is used by fairseq's beam search. How and why is not particularly important here.
        cache_state = self.get_incremental_state(incremental_state, "cached_state")
        prev_hiddens = cache_state["prev_hiddens"]
        prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens]
        cache_state = {
            "prev_hiddens": torch.stack(prev_hiddens),
        }
        self.set_incremental_state(incremental_state, "cached_state", cache_state)
        return

Seq2Seq

– Composed of **Encoder** and **Decoder**

– Recieves inputs and pass to **Encoder**

– Pass the outputs from **Encoder** to **Decoder**

**Decoder** will decode according to outputs of previous timesteps as well as **Encoder** outputs  

– Once done decoding, return the **Decoder** outputs

class Seq2Seq(FairseqEncoderDecoderModel):
    def __init__(self, args, encoder, decoder):
        super().__init__(encoder, decoder)
        self.args = args
    
    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = True,
    ):
        """
        Run the forward pass for an encoder-decoder model.
        """
        encoder_out = self.encoder(
            src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
        )
        logits, extra = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return logits, extra

Model Initialization

# # HINT: transformer architecture
from fairseq.models.transformer import (
    TransformerEncoder, 
    TransformerDecoder,
)

def build_model(args, task):
    """ build a model instance based on hyperparameters """
    src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

    # token embeddings
    encoder_embed_tokens = nn.Embedding(len(src_dict), args.encoder_embed_dim, src_dict.pad())
    decoder_embed_tokens = nn.Embedding(len(tgt_dict), args.decoder_embed_dim, tgt_dict.pad())
    
    # encoder decoder
    # HINT: TODO: switch to TransformerEncoder & TransformerDecoder
    encoder = RNNEncoder(args, src_dict, encoder_embed_tokens)
    decoder = RNNDecoder(args, tgt_dict, decoder_embed_tokens)
    # encoder = TransformerEncoder(args, src_dict, encoder_embed_tokens)
    # decoder = TransformerDecoder(args, tgt_dict, decoder_embed_tokens)

    # sequence to sequence model
    model = Seq2Seq(args, encoder, decoder)
    
    # initialization for seq2seq model is important, requires extra handling
    def init_params(module):
        from fairseq.modules import MultiheadAttention
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.bias is not None:
                module.bias.data.zero_()
        if isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        if isinstance(module, MultiheadAttention):
            module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
            module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
            module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
        if isinstance(module, nn.RNNBase):
            for name, param in module.named_parameters():
                if "weight" in name or "bias" in name:
                    param.data.uniform_(-0.1, 0.1)
            
    # weight initialization
    model.apply(init_params)
    return model

Architecture Related Configuration

For strong baseline, please refer to the hyperparameters for *transformer-base* in Table 3 in [Attention is all you need](#vaswani2017)

arch_args = Namespace(
    encoder_embed_dim=256,
    encoder_ffn_embed_dim=512,
    encoder_layers=1,
    decoder_embed_dim=256,
    decoder_ffn_embed_dim=1024,
    decoder_layers=1,
    share_decoder_input_output_embed=True,
    dropout=0.3,
)

# HINT: these patches on parameters for Transformer
def add_transformer_args(args):
    args.encoder_attention_heads=4
    args.encoder_normalize_before=True
    
    args.decoder_attention_heads=4
    args.decoder_normalize_before=True
    
    args.activation_fn="relu"
    args.max_source_positions=1024
    args.max_target_positions=1024
    
    # patches on default parameters for Transformer (those not set above)
    from fairseq.models.transformer import base_architecture
    base_architecture(arch_args)

# add_transformer_args(arch_args)
if config.use_wandb:
    wandb.config.update(vars(arch_args))
model = build_model(arch_args, task)
logger.info(model)

Optimization

Loss: Label Smoothing Regularization

* let the model learn to generate less concentrated distribution, and prevent over-confidence

* sometimes the ground truth may not be the only answer. thus, when calculating loss, we reserve some probability for incorrect labels

* avoids overfitting

code [source](https://fairseq.readthedocs.io/en/latest/_modules/fairseq/criterions/label_smoothed_cross_entropy.html)

class LabelSmoothedCrossEntropyCriterion(nn.Module):
    def __init__(self, smoothing, ignore_index=None, reduce=True):
        super().__init__()
        self.smoothing = smoothing
        self.ignore_index = ignore_index
        self.reduce = reduce
    
    def forward(self, lprobs, target):
        if target.dim() == lprobs.dim() - 1:
            target = target.unsqueeze(-1)
        # nll: Negative log likelihood,the cross-entropy when target is one-hot. following line is same as F.nll_loss
        nll_loss = -lprobs.gather(dim=-1, index=target)
        #  reserve some probability for other labels. thus when calculating cross-entropy, 
        # equivalent to summing the log probs of all labels
        smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
        if self.ignore_index is not None:
            pad_mask = target.eq(self.ignore_index)
            nll_loss.masked_fill_(pad_mask, 0.0)
            smooth_loss.masked_fill_(pad_mask, 0.0)
        else:
            nll_loss = nll_loss.squeeze(-1)
            smooth_loss = smooth_loss.squeeze(-1)
        if self.reduce:
            nll_loss = nll_loss.sum()
            smooth_loss = smooth_loss.sum()
        # when calculating cross-entropy, add the loss of other labels
        eps_i = self.smoothing / lprobs.size(-1)
        loss = (1.0 - self.smoothing) * nll_loss + eps_i * smooth_loss
        return loss

# generally, 0.1 is good enough
criterion = LabelSmoothedCrossEntropyCriterion(
    smoothing=0.1,
    ignore_index=task.target_dictionary.pad(),
)

Optimizer: Adam + lr scheduling

Inverse square root scheduling is important to the stability when training Transformer. It’s later used on RNN as well.

Update the learning rate according to the following equation. Linearly increase the first stage, then decay proportionally to the inverse square root of timestep.

$$lrate = d_{\text{model}}^{-0.5}\cdot\min({step\_num}^{-0.5},{step\_num}\cdot{warmup\_steps}^{-1.5})$$

def get_rate(d_model, step_num, warmup_step):
    # TODO: Change lr from constant to the equation shown above
    lr = 0.001
    return lr
class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
    
    @property
    def param_groups(self):
        return self.optimizer.param_groups
        
    def multiply_grads(self, c):
        """Multiplies grads by a constant *c*."""                
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is not None:
                    p.grad.data.mul_(c)
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return 0 if not step else self.factor * get_rate(self.model_size, step, self.warmup)

Scheduling Visualized

optimizer = NoamOpt(
    model_size=arch_args.encoder_embed_dim, 
    factor=config.lr_factor, 
    warmup=config.lr_warmup, 
    optimizer=torch.optim.AdamW(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=0.0001))
plt.plot(np.arange(1, 100000), [optimizer.rate(i) for i in range(1, 100000)])
plt.legend([f"{optimizer.model_size}:{optimizer.warmup}"])
None

Training Procedure

Training

from fairseq.data import iterators
from torch.cuda.amp import GradScaler, autocast

def train_one_epoch(epoch_itr, model, task, criterion, optimizer, accum_steps=1):
    itr = epoch_itr.next_epoch_itr(shuffle=True)
    itr = iterators.GroupedIterator(itr, accum_steps) # gradient accumulation: update every accum_steps samples
    
    stats = {"loss": []}
    scaler = GradScaler() # automatic mixed precision (amp) 
    
    model.train()
    progress = tqdm.tqdm(itr, desc=f"train epoch {epoch_itr.epoch}", leave=False)
    for samples in progress:
        model.zero_grad()
        accum_loss = 0
        sample_size = 0
        # gradient accumulation: update every accum_steps samples
        for i, sample in enumerate(samples):
            if i == 1:
                # emptying the CUDA cache after the first step can reduce the chance of OOM
                torch.cuda.empty_cache()

            sample = utils.move_to_cuda(sample, device=device)
            target = sample["target"]
            sample_size_i = sample["ntokens"]
            sample_size += sample_size_i
            
            # mixed precision training
            with autocast():
                net_output = model.forward(**sample["net_input"])
                lprobs = F.log_softmax(net_output[0], -1)            
                loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1))
                
                # logging
                accum_loss += loss.item()
                # back-prop
                scaler.scale(loss).backward()                
        
        scaler.unscale_(optimizer)
        optimizer.multiply_grads(1 / (sample_size or 1.0)) # (sample_size or 1.0) handles the case of a zero gradient
        gnorm = nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm) # grad norm clipping prevents gradient exploding
        
        scaler.step(optimizer)
        scaler.update()
        
        # logging
        loss_print = accum_loss/sample_size
        stats["loss"].append(loss_print)
        progress.set_postfix(loss=loss_print)
        if config.use_wandb:
            wandb.log({
                "train/loss": loss_print,
                "train/grad_norm": gnorm.item(),
                "train/lr": optimizer.rate(),
                "train/sample_size": sample_size,
            })
        
    loss_print = np.mean(stats["loss"])
    logger.info(f"training loss: {loss_print:.4f}")
    return stats

Validation & Inference

To prevent overfitting, validation is required every epoch to validate the performance on unseen data.

– the procedure is essensially same as training, with the addition of inference step

– after validation we can save the model weights

Validation loss alone cannot describe the actual performance of the model

– Directly produce translation hypotheses based on current model, then calculate BLEU with the reference translation

– We can also manually examine the hypotheses’ quality

– We use fairseq’s sequence generator for beam search to generate translation hypotheses

# fairseq's beam search generator
# given model and input seqeunce, produce translation hypotheses by beam search
sequence_generator = task.build_generator([model], config)

def decode(toks, dictionary):
    # convert from Tensor to human readable sentence
    s = dictionary.string(
        toks.int().cpu(),
        config.post_process,
    )
    return s if s else "<unk>"

def inference_step(sample, model):
    gen_out = sequence_generator.generate([model], sample)
    srcs = []
    hyps = []
    refs = []
    for i in range(len(gen_out)):
        # for each sample, collect the input, hypothesis and reference, later be used to calculate BLEU
        srcs.append(decode(
            utils.strip_pad(sample["net_input"]["src_tokens"][i], task.source_dictionary.pad()), 
            task.source_dictionary,
        ))
        hyps.append(decode(
            gen_out[i][0]["tokens"], # 0 indicates using the top hypothesis in beam
            task.target_dictionary,
        ))
        refs.append(decode(
            utils.strip_pad(sample["target"][i], task.target_dictionary.pad()), 
            task.target_dictionary,
        ))
    return srcs, hyps, refs
import shutil
import sacrebleu

def validate(model, task, criterion, log_to_wandb=True):
    logger.info('begin validation')
    itr = load_data_iterator(task, "valid", 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)
    
    stats = {"loss":[], "bleu": 0, "srcs":[], "hyps":[], "refs":[]}
    srcs = []
    hyps = []
    refs = []
    
    model.eval()
    progress = tqdm.tqdm(itr, desc=f"validation", leave=False)
    with torch.no_grad():
        for i, sample in enumerate(progress):
            # validation loss
            sample = utils.move_to_cuda(sample, device=device)
            net_output = model.forward(**sample["net_input"])

            lprobs = F.log_softmax(net_output[0], -1)
            target = sample["target"]
            sample_size = sample["ntokens"]
            loss = criterion(lprobs.view(-1, lprobs.size(-1)), target.view(-1)) / sample_size
            progress.set_postfix(valid_loss=loss.item())
            stats["loss"].append(loss)
            
            # do inference
            s, h, r = inference_step(sample, model)
            srcs.extend(s)
            hyps.extend(h)
            refs.extend(r)
            
    tok = 'zh' if task.cfg.target_lang == 'zh' else '13a'
    stats["loss"] = torch.stack(stats["loss"]).mean().item()
    stats["bleu"] = sacrebleu.corpus_bleu(hyps, [refs], tokenize=tok) # 計算BLEU score
    stats["srcs"] = srcs
    stats["hyps"] = hyps
    stats["refs"] = refs
    
    if config.use_wandb and log_to_wandb:
        wandb.log({
            "valid/loss": stats["loss"],
            "valid/bleu": stats["bleu"].score,
        }, commit=False)
    
    showid = np.random.randint(len(hyps))
    logger.info("example source: " + srcs[showid])
    logger.info("example hypothesis: " + hyps[showid])
    logger.info("example reference: " + refs[showid])
    
    # show bleu results
    logger.info(f"validation loss:\t{stats['loss']:.4f}")
    logger.info(stats["bleu"].format())
    return stats

Save and Load Model Weights

def validate_and_save(model, task, criterion, optimizer, epoch, save=True):   
    stats = validate(model, task, criterion)
    bleu = stats['bleu']
    loss = stats['loss']
    if save:
        # save epoch checkpoints
        savedir = Path(config.savedir).absolute()
        savedir.mkdir(parents=True, exist_ok=True)
        
        check = {
            "model": model.state_dict(),
            "stats": {"bleu": bleu.score, "loss": loss},
            "optim": {"step": optimizer._step}
        }
        torch.save(check, savedir/f"checkpoint{epoch}.pt")
        shutil.copy(savedir/f"checkpoint{epoch}.pt", savedir/f"checkpoint_last.pt")
        logger.info(f"saved epoch checkpoint: {savedir}/checkpoint{epoch}.pt")
    
        # save epoch samples
        with open(savedir/f"samples{epoch}.{config.source_lang}-{config.target_lang}.txt", "w") as f:
            for s, h in zip(stats["srcs"], stats["hyps"]):
                f.write(f"{s}\t{h}\n")

        # get best valid bleu    
        if getattr(validate_and_save, "best_bleu", 0) < bleu.score:
            validate_and_save.best_bleu = bleu.score
            torch.save(check, savedir/f"checkpoint_best.pt")
            
        del_file = savedir / f"checkpoint{epoch - config.keep_last_epochs}.pt"
        if del_file.exists():
            del_file.unlink()
    
    return stats

def try_load_checkpoint(model, optimizer=None, name=None):
    name = name if name else "checkpoint_last.pt"
    checkpath = Path(config.savedir)/name
    if checkpath.exists():
        check = torch.load(checkpath)
        model.load_state_dict(check["model"])
        stats = check["stats"]
        step = "unknown"
        if optimizer != None:
            optimizer._step = step = check["optim"]["step"]
        logger.info(f"loaded checkpoint {checkpath}: step={step} loss={stats['loss']} bleu={stats['bleu']}")
    else:
        logger.info(f"no checkpoints found at {checkpath}!")

Main

Training loop

model = model.to(device=device)
criterion = criterion.to(device=device)
logger.info("task: {}".format(task.__class__.__name__))
logger.info("encoder: {}".format(model.encoder.__class__.__name__))
logger.info("decoder: {}".format(model.decoder.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info("optimizer: {}".format(optimizer.__class__.__name__))
logger.info(
    "num. model params: {:,} (num. trained: {:,})".format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    )
)
logger.info(f"max tokens per batch = {config.max_tokens}, accumulate steps = {config.accum_steps}")
epoch_itr = load_data_iterator(task, "train", config.start_epoch, config.max_tokens, config.num_workers)
try_load_checkpoint(model, optimizer, name=config.resume)
while epoch_itr.next_epoch_idx <= config.max_epoch:
    # train for one epoch
    train_one_epoch(epoch_itr, model, task, criterion, optimizer, config.accum_steps)
    stats = validate_and_save(model, task, criterion, optimizer, epoch=epoch_itr.epoch)
    logger.info("end of epoch {}".format(epoch_itr.epoch))    
    epoch_itr = load_data_iterator(task, "train", epoch_itr.next_epoch_idx, config.max_tokens, config.num_workers)

Submission

# averaging a few checkpoints can have a similar effect to ensemble
checkdir=config.savedir
!python ./fairseq/scripts/average_checkpoints.py \
--inputs {checkdir} \
--num-epoch-checkpoints 5 \
--output {checkdir}/avg_last_5_checkpoint.pt

Confirm model weights used to generate submission

# checkpoint_last.pt : latest epoch
# checkpoint_best.pt : highest validation bleu
# avg_last_5_checkpoint.pt: the average of last 5 epochs
try_load_checkpoint(model, name="avg_last_5_checkpoint.pt")
validate(model, task, criterion, log_to_wandb=False)
None

Generate Prediction

def generate_prediction(model, task, split="test", outfile="./prediction.txt"):    
    task.load_dataset(split=split, epoch=1)
    itr = load_data_iterator(task, split, 1, config.max_tokens, config.num_workers).next_epoch_itr(shuffle=False)
    
    idxs = []
    hyps = []

    model.eval()
    progress = tqdm.tqdm(itr, desc=f"prediction")
    with torch.no_grad():
        for i, sample in enumerate(progress):
            # validation loss
            sample = utils.move_to_cuda(sample, device=device)

            # do inference
            s, h, r = inference_step(sample, model)
            
            hyps.extend(h)
            idxs.extend(list(sample['id']))
            
    # sort based on the order before preprocess
    hyps = [x for _,x in sorted(zip(idxs,hyps))]
    
    with open(outfile, "w") as f:
        for h in hyps:
            f.write(h+"\n")
generate_prediction(model, task)
raise

Back-translation

Train a backward translation model

1. Switch the source_lang and target_lang in **config**

2. Change the savedir in **config** (eg. “./checkpoints/transformer-back”)

3. Train model

Generate synthetic data with backward model

Download monolingual data

mono_dataset_name = 'mono'
mono_prefix = Path(data_dir).absolute() / mono_dataset_name
mono_prefix.mkdir(parents=True, exist_ok=True)

urls = (
    "https://github.com/figisiwirf/ml2023-hw5-dataset/releases/download/v1.0.1/ted_zh_corpus.deduped.gz",
)
file_names = (
    'ted_zh_corpus.deduped.gz',
)

for u, f in zip(urls, file_names):
    path = mono_prefix/f
    if not path.exists():
        !wget {u} -O {path}
    else:
        print(f'{f} is exist, skip downloading')
    if path.suffix == ".tgz":
        !tar -xvf {path} -C {prefix}
    elif path.suffix == ".zip":
        !unzip -o {path} -d {prefix}
    elif path.suffix == ".gz":
        !gzip -fkd {path}

TODO: clean corpus

1. remove sentences that are too long or too short

2. unify punctuation

hint: you can use clean_s() defined above to do this

++++++

TODO: Subword Units

Use the spm model of the backward model to tokenize the data into subword units

hint: spm model is located at DATA/raw-data/\[dataset\]/spm\[vocab_num\].model

++++++

Binarize

use fairseq to binarize data

binpath = Path('./DATA/data-bin', mono_dataset_name)
src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
tgt_dict_file = src_dict_file
monopref = str(mono_prefix/"mono.tok") # whatever filepath you get after applying subword tokenization
if binpath.exists():
    print(binpath, "exists, will not overwrite!")
else:
    !python -m fairseq_cli.preprocess\
        --source-lang 'zh'\
        --target-lang 'en'\
        --trainpref {monopref}\
        --destdir {binpath}\
        --srcdict {src_dict_file}\
        --tgtdict {tgt_dict_file}\
        --workers 2

TODO: Generate synthetic data with backward model

Add binarized monolingual data to the original data directory, and name it with “split_name”

ex. ./DATA/data-bin/ted2020/\[split_name\].zh-en.\[“en”, “zh”\].\[“bin”, “idx”\]

then you can use ‘generate_prediction(model, task, split=”split_name”)’ to generate translation prediction

# Add binarized monolingual data to the original data directory, and name it with "split_name"
# ex. ./DATA/data-bin/ted2020/\[split_name\].zh-en.\["en", "zh"\].\["bin", "idx"\]
!cp ./DATA/data-bin/mono/train.zh-en.zh.bin ./DATA/data-bin/ted2020/mono.zh-en.zh.bin
!cp ./DATA/data-bin/mono/train.zh-en.zh.idx ./DATA/data-bin/ted2020/mono.zh-en.zh.idx
!cp ./DATA/data-bin/mono/train.zh-en.en.bin ./DATA/data-bin/ted2020/mono.zh-en.en.bin
!cp ./DATA/data-bin/mono/train.zh-en.en.idx ./DATA/data-bin/ted2020/mono.zh-en.en.idx
# hint: do prediction on split='mono' to create prediction_file
# generate_prediction( ... ,split=... ,outfile=... )

TODO: Create new dataset

1. Combine the prediction data with monolingual data

2. Use the original spm model to tokenize data into Subword Units

3. Binarize data with fairseq

# Combine prediction_file (.en) and mono.zh (.zh) into a new dataset.
# 
# hint: tokenize prediction_file with the spm model
# spm_model.encode(line, out_type=str)
# output: ./DATA/rawdata/mono/mono.tok.en & mono.tok.zh
#
# hint: use fairseq to binarize these two files again
# binpath = Path('./DATA/data-bin/synthetic')
# src_dict_file = './DATA/data-bin/ted2020/dict.en.txt'
# tgt_dict_file = src_dict_file
# monopref = ./DATA/rawdata/mono/mono.tok # or whatever path after applying subword tokenization, w/o the suffix (.zh/.en)
# if binpath.exists():
#     print(binpath, "exists, will not overwrite!")
# else:
#     !python -m fairseq_cli.preprocess\
#         --source-lang 'zh'\
#         --target-lang 'en'\
#         --trainpref {monopref}\
#         --destdir {binpath}\
#         --srcdict {src_dict_file}\
#         --tgtdict {tgt_dict_file}\
#         --workers 2
# create a new dataset from all the files prepared above
!cp -r ./DATA/data-bin/ted2020/ ./DATA/data-bin/ted2020_with_mono/

!cp ./DATA/data-bin/synthetic/train.zh-en.zh.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.zh.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.zh.idx
!cp ./DATA/data-bin/synthetic/train.zh-en.en.bin ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.bin
!cp ./DATA/data-bin/synthetic/train.zh-en.en.idx ./DATA/data-bin/ted2020_with_mono/train1.en-zh.en.idx

Created new dataset “ted2020_with_mono”

1. Change the datadir in **config** (“./DATA/data-bin/ted2020_with_mono”)

2. Switch back the source_lang and target_lang in **config** (“en”, “zh”)

2. Change the savedir in **config** (eg. “./checkpoints/transformer-bt”)

3. Train model

References

1. <a name=ott2019fairseq></a>Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., … & Auli, M. (2019, June). fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) (pp. 48-53).

2. <a name=vaswani2017></a>Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017, December). Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010).

3. <a name=reimers-2020-multilingual-sentence-bert></a>Reimers, N., & Gurevych, I. (2020, November). Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4512-4525).

4. <a name=tiedemann2012parallel></a>Tiedemann, J. (2012, May). Parallel Data, Tools and Interfaces in OPUS. In Lrec (Vol. 2012, pp. 2214-2218).

5. <a name=kudo-richardson-2018-sentencepiece></a>Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 66-71).

6. <a name=sennrich-etal-2016-improving></a>Sennrich, R., Haddow, B., & Birch, A. (2016, August). Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 86-96).

7. <a name=edunov-etal-2018-understanding></a>Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding Back-Translation at Scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 489-500).

8. https://github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus

9. https://ithelp.ithome.com.tw/articles/10233122

10. https://nlp.seas.harvard.edu/2018/04/03/attention.html

11. https://colab.research.google.com/github/ga642381/ML2021-Spring/blob/main/HW05/HW05.ipynb

++++++

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇