【HW4】Self attention0.1李宏毅2021/2022春机器学习课程笔记EP14(P45-P47)
从今天开始我将学习李宏毅教授的机器学习视频,下面是课程的连接(强推)李宏毅2021/2022春机器学习课程_哔哩哔哩_bilibili。一共有155个视频,争取都学习完成吧。
那么首先这门课程需要有一定的代码基础,简单学习一下Python的基本用法,还有里面的NumPy库等等的基本知识。再就是数学方面的基础啦,微积分、线性代数和概率论的基础都是听懂这门课必须的。
本次作业有一个小的提示吧,就是不要尝试运行2021或者2022的代码了,那个里面的数据集的源地址已经404,本来我在网络上找到了这一课的数据集想尝试放到colab上面,但是因为网络波动原因一直上传失败,最后发现2023最新的作业里的代码的数据集是可以下载的,所以就不用麻烦了,直接运行2023的作业就行了。那本次作业的数据集相比以往大了不少,我自己没怎么改,用了差不多快5个小时的时间,如果想过更好的baseline估计要数倍的时间。
下载数据集
!wget https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partaa
!wget https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partab
!wget https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partac
!wget https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partad
!cat Dataset.tar.gz.part* > Dataset.tar.gz
!rm Dataset.tar.gz.partaa
!rm Dataset.tar.gz.partab
!rm Dataset.tar.gz.partac
!rm Dataset.tar.gz.partad
# unzip the file
!tar zxf Dataset.tar.gz
!rm Dataset.tar.gz
–2024-04-06 07:44:39– https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partaa Resolving github.com (github.com)… 140.82.114.3 Connecting to github.com (github.com)|140.82.114.3|:443… connected. HTTP request sent, awaiting response… 302 Found Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/7646b36b-6033-4a31-bac4-380c4d21d91e?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074440Z&X-Amz-Expires=300&X-Amz-Signature=010f486318683278533162f545daed7f736fc0053694c6e98b3ca1cf848037df&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partaa&response-content-type=application%2Foctet-stream [following] –2024-04-06 07:44:40– https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/7646b36b-6033-4a31-bac4-380c4d21d91e?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074440Z&X-Amz-Expires=300&X-Amz-Signature=010f486318683278533162f545daed7f736fc0053694c6e98b3ca1cf848037df&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partaa&response-content-type=application%2Foctet-stream Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.110.133, 185.199.109.133, 185.199.108.133, … Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.110.133|:443… connected. HTTP request sent, awaiting response… 200 OK Length: 1560784333 (1.5G) [application/octet-stream] Saving to: ‘Dataset.tar.gz.partaa’ Dataset.tar.gz.part 100%[===================>] 1.45G 69.3MB/s in 21s 2024-04-06 07:45:01 (70.1 MB/s) – ‘Dataset.tar.gz.partaa’ saved [1560784333/1560784333] –2024-04-06 07:45:01– https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partab Resolving github.com (github.com)… 140.82.114.3 Connecting to github.com (github.com)|140.82.114.3|:443… connected. HTTP request sent, awaiting response… 302 Found Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/95b45712-6e2f-4a52-96b1-7d88578345fc?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074502Z&X-Amz-Expires=300&X-Amz-Signature=bbcf001659c13b2799db0c9e208aac953c48ab98ba18d9fc0bd1c65661bed690&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partab&response-content-type=application%2Foctet-stream [following] –2024-04-06 07:45:02– https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/95b45712-6e2f-4a52-96b1-7d88578345fc?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074502Z&X-Amz-Expires=300&X-Amz-Signature=bbcf001659c13b2799db0c9e208aac953c48ab98ba18d9fc0bd1c65661bed690&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partab&response-content-type=application%2Foctet-stream Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.108.133, 185.199.109.133, 185.199.110.133, … Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.108.133|:443… connected. HTTP request sent, awaiting response… 200 OK Length: 1560784333 (1.5G) [application/octet-stream] Saving to: ‘Dataset.tar.gz.partab’ Dataset.tar.gz.part 100%[===================>] 1.45G 185MB/s in 8.3s 2024-04-06 07:45:10 (180 MB/s) – ‘Dataset.tar.gz.partab’ saved [1560784333/1560784333] –2024-04-06 07:45:10– https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partac Resolving github.com (github.com)… 140.82.113.4 Connecting to github.com (github.com)|140.82.113.4|:443… connected. HTTP request sent, awaiting response… 302 Found Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/0c9d42d3-95b7-4ca4-b57c-ab1a66a5564d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074511Z&X-Amz-Expires=300&X-Amz-Signature=5c7261a7bf2e44dc70b11060edd9b7ab404f111d200ac6cb8a5a596f279d407c&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partac&response-content-type=application%2Foctet-stream [following] –2024-04-06 07:45:11– https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/0c9d42d3-95b7-4ca4-b57c-ab1a66a5564d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074511Z&X-Amz-Expires=300&X-Amz-Signature=5c7261a7bf2e44dc70b11060edd9b7ab404f111d200ac6cb8a5a596f279d407c&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partac&response-content-type=application%2Foctet-stream Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.110.133, 185.199.108.133, 185.199.111.133, … Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.110.133|:443… connected. HTTP request sent, awaiting response… 200 OK Length: 1560784333 (1.5G) [application/octet-stream] Saving to: ‘Dataset.tar.gz.partac’ Dataset.tar.gz.part 100%[===================>] 1.45G 68.6MB/s in 22s 2024-04-06 07:45:33 (67.7 MB/s) – ‘Dataset.tar.gz.partac’ saved [1560784333/1560784333] –2024-04-06 07:45:33– https://github.com/googly-mingto/ML2023HW4/releases/download/data/Dataset.tar.gz.partad Resolving github.com (github.com)… 140.82.113.4 Connecting to github.com (github.com)|140.82.113.4|:443… connected. HTTP request sent, awaiting response… 302 Found Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/0ee11da6-8c96-4463-b084-cea8f95d26e9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074533Z&X-Amz-Expires=300&X-Amz-Signature=bedbbb164433c7d64178e9133717d7ae79ff24ff77722a12027b04b44d2612ce&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partad&response-content-type=application%2Foctet-stream [following] –2024-04-06 07:45:33– https://objects.githubusercontent.com/github-production-release-asset-2e65be/606989982/0ee11da6-8c96-4463-b084-cea8f95d26e9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240406%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240406T074533Z&X-Amz-Expires=300&X-Amz-Signature=bedbbb164433c7d64178e9133717d7ae79ff24ff77722a12027b04b44d2612ce&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=606989982&response-content-disposition=attachment%3B%20filename%3DDataset.tar.gz.partad&response-content-type=application%2Foctet-stream Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.108.133, 185.199.111.133, 185.199.109.133, … Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.108.133|:443… connected. HTTP request sent, awaiting response… 200 OK Length: 1560784336 (1.5G) [application/octet-stream] Saving to: ‘Dataset.tar.gz.partad’ Dataset.tar.gz.part 100%[===================>] 1.45G 69.6MB/s in 22s 2024-04-06 07:45:57 (68.7 MB/s) – ‘Dataset.tar.gz.partad’ saved [1560784336/1560784336] tar: Ignoring unknown extended header keyword ‘LIBARCHIVE.xattr.com.apple.macl’
!tar zxf Dataset.tar.gz
tar (child): Dataset.tar.gz: Cannot open: No such file or directory tar (child): Error is not recoverable: exiting now tar: Child returned status 2 tar: Error is not recoverable: exiting now
固定随机种子
import numpy as np
import torch
import random
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
set_seed(87)
Dataset
import os
import json
import torch
import random
from pathlib import Path
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
class myDataset(Dataset):
def __init__(self, data_dir, segment_len=128):
self.data_dir = data_dir
self.segment_len = segment_len
# Load the mapping from speaker neme to their corresponding id.
mapping_path = Path(data_dir) / "mapping.json"
mapping = json.load(mapping_path.open())
self.speaker2id = mapping["speaker2id"]
# Load metadata of training data.
metadata_path = Path(data_dir) / "metadata.json"
metadata = json.load(open(metadata_path))["speakers"]
# Get the total number of speaker.
self.speaker_num = len(metadata.keys())
self.data = []
for speaker in metadata.keys():
for utterances in metadata[speaker]:
self.data.append([utterances["feature_path"], self.speaker2id[speaker]])
def __len__(self):
return len(self.data)
def __getitem__(self, index):
feat_path, speaker = self.data[index]
# Load preprocessed mel-spectrogram.
mel = torch.load(os.path.join(self.data_dir, feat_path))
# Segmemt mel-spectrogram into "segment_len" frames.
if len(mel) > self.segment_len:
# Randomly get the starting point of the segment.
start = random.randint(0, len(mel) - self.segment_len)
# Get a segment with "segment_len" frames.
mel = torch.FloatTensor(mel[start:start+self.segment_len])
else:
mel = torch.FloatTensor(mel)
# Turn the speaker id into long for computing loss later.
speaker = torch.FloatTensor([speaker]).long()
return mel, speaker
def get_speaker_number(self):
return self.speaker_num
Download
import torch
from torch.utils.data import DataLoader, random_split
from torch.nn.utils.rnn import pad_sequence
def collate_batch(batch):
# Process features within a batch.
"""Collate a batch of data."""
mel, speaker = zip(*batch)
# Because we train the model batch by batch, we need to pad the features in the same batch to make their lengths the same.
mel = pad_sequence(mel, batch_first=True, padding_value=-20) # pad log 10^(-20) which is very small value.
# mel: (batch size, length, 40)
return mel, torch.FloatTensor(speaker).long()
def get_dataloader(data_dir, batch_size, n_workers):
"""Generate dataloader"""
dataset = myDataset(data_dir)
speaker_num = dataset.get_speaker_number()
# Split dataset into training dataset and validation dataset
trainlen = int(0.9 * len(dataset))
lengths = [trainlen, len(dataset) - trainlen]
trainset, validset = random_split(dataset, lengths)
train_loader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
num_workers=n_workers,
pin_memory=True,
collate_fn=collate_batch,
)
valid_loader = DataLoader(
validset,
batch_size=batch_size,
num_workers=n_workers,
drop_last=True,
pin_memory=True,
collate_fn=collate_batch,
)
return train_loader, valid_loader, speaker_num
模型
import torch
import torch.nn as nn
import torch.nn.functional as F
class Classifier(nn.Module):
def __init__(self, d_model=80, n_spks=600, dropout=0.1):
super().__init__()
# Project the dimension of features from that of input into d_model.
self.prenet = nn.Linear(40, d_model)
# TODO:
# Change Transformer to Conformer.
# https://arxiv.org/abs/2005.08100
self.encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model, dim_feedforward=256, nhead=2
)
# self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
# Project the the dimension of features from d_model into speaker nums.
self.pred_layer = nn.Sequential(
nn.Linear(d_model, d_model),
nn.Sigmoid(),
nn.Linear(d_model, n_spks),
)
def forward(self, mels):
"""
args:
mels: (batch size, length, 40)
return:
out: (batch size, n_spks)
"""
# out: (batch size, length, d_model)
out = self.prenet(mels)
# out: (length, batch size, d_model)
out = out.permute(1, 0, 2)
# The encoder layer expect features in the shape of (length, batch size, d_model).
out = self.encoder_layer(out)
# out: (batch size, length, d_model)
out = out.transpose(0, 1)
# mean pooling
stats = out.mean(dim=1)
# out: (batch, n_spks)
out = self.pred_layer(stats)
return out
学习率表
import math
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
def get_cosine_schedule_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer (:class:`~torch.optim.Optimizer`):
The optimizer for which to schedule the learning rate.
num_warmup_steps (:obj:`int`):
The number of steps for the warmup phase.
num_training_steps (:obj:`int`):
The total number of training steps.
num_cycles (:obj:`float`, `optional`, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (:obj:`int`, `optional`, defaults to -1):
The index of the last epoch when resuming training.
Return:
:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
# Warmup
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
# decadence
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
模型函数
import torch
def model_fn(batch, model, criterion, device):
"""Forward a batch through the model."""
mels, labels = batch
mels = mels.to(device)
labels = labels.to(device)
outs = model(mels)
loss = criterion(outs, labels)
# Get the speaker id with highest probability.
preds = outs.argmax(1)
# Compute accuracy.
accuracy = torch.mean((preds == labels).float())
return loss, accuracy
验证
from tqdm import tqdm
import torch
def valid(dataloader, model, criterion, device):
"""Validate on validation set."""
model.eval()
running_loss = 0.0
running_accuracy = 0.0
pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr")
for i, batch in enumerate(dataloader):
with torch.no_grad():
loss, accuracy = model_fn(batch, model, criterion, device)
running_loss += loss.item()
running_accuracy += accuracy.item()
pbar.update(dataloader.batch_size)
pbar.set_postfix(
loss=f"{running_loss / (i+1):.2f}",
accuracy=f"{running_accuracy / (i+1):.2f}",
)
pbar.close()
model.train()
return running_accuracy / len(dataloader)
主函数
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, random_split
def parse_args():
"""arguments"""
config = {
"data_dir": "./Dataset",
"save_path": "model.ckpt",
"batch_size": 64,
"n_workers": 8,
"valid_steps": 2000,
"warmup_steps": 1000,
"save_steps": 10000,
"total_steps": 70000,
}
return config
def main(
data_dir,
save_path,
batch_size,
n_workers,
valid_steps,
warmup_steps,
total_steps,
save_steps,
):
"""Main function."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[Info]: Use {device} now!")
train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers)
train_iterator = iter(train_loader)
print(f"[Info]: Finish loading data!",flush = True)
model = Classifier(n_spks=speaker_num).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=1e-3)
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
print(f"[Info]: Finish creating model!",flush = True)
best_accuracy = -1.0
best_state_dict = None
pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")
for step in range(total_steps):
# Get data
try:
batch = next(train_iterator)
except StopIteration:
train_iterator = iter(train_loader)
batch = next(train_iterator)
loss, accuracy = model_fn(batch, model, criterion, device)
batch_loss = loss.item()
batch_accuracy = accuracy.item()
# Updata model
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
# Log
pbar.update()
pbar.set_postfix(
loss=f"{batch_loss:.2f}",
accuracy=f"{batch_accuracy:.2f}",
step=step + 1,
)
# Do validation
if (step + 1) % valid_steps == 0:
pbar.close()
valid_accuracy = valid(valid_loader, model, criterion, device)
# keep the best model
if valid_accuracy > best_accuracy:
best_accuracy = valid_accuracy
best_state_dict = model.state_dict()
pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")
# Save the best model so far.
if (step + 1) % save_steps == 0 and best_state_dict is not None:
torch.save(best_state_dict, save_path)
pbar.write(f"Step {step + 1}, best model saved. (accuracy={best_accuracy:.4f})")
pbar.close()
if __name__ == "__main__":
main(**parse_args())
[Info]: Use cpu now!
Train: 0% 0/2000 [24:09<?, ? step/s] Train: 0% 0/2000 [22:12<?, ? step/s]
[Info]: Finish loading data! [Info]: Finish creating model!
Train: 100% 2000/2000 [08:21<00:00, 3.99 step/s, accuracy=0.05, loss=4.89, step=2000] Valid: 99% 5632/5667 [00:16<00:00, 345.07 uttr/s, accuracy=0.06, loss=4.94] Train: 100% 2000/2000 [08:18<00:00, 4.02 step/s, accuracy=0.16, loss=4.23, step=4000] Valid: 99% 5632/5667 [00:13<00:00, 429.97 uttr/s, accuracy=0.15, loss=4.22] Train: 100% 2000/2000 [08:07<00:00, 4.10 step/s, accuracy=0.20, loss=3.84, step=6000] Valid: 99% 5632/5667 [00:10<00:00, 523.66 uttr/s, accuracy=0.20, loss=3.82] Train: 100% 2000/2000 [08:20<00:00, 4.00 step/s, accuracy=0.34, loss=3.35, step=8000] Valid: 99% 5632/5667 [00:11<00:00, 506.66 uttr/s, accuracy=0.26, loss=3.50] Train: 100% 2000/2000 [08:16<00:00, 4.03 step/s, accuracy=0.36, loss=3.18, step=1e+4] Valid: 99% 5632/5667 [00:07<00:00, 732.66 uttr/s, accuracy=0.29, loss=3.26] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [1:04:43<?, ? step/s]
Step 10000, best model saved. (accuracy=0.2919)
Train: 100% 2000/2000 [08:14<00:00, 4.05 step/s, accuracy=0.41, loss=3.03, step=12000] Valid: 99% 5632/5667 [00:10<00:00, 547.19 uttr/s, accuracy=0.32, loss=3.15] Train: 100% 2000/2000 [08:03<00:00, 4.13 step/s, accuracy=0.41, loss=2.50, step=14000] Valid: 99% 5632/5667 [00:09<00:00, 576.39 uttr/s, accuracy=0.35, loss=2.97] Train: 100% 2000/2000 [08:18<00:00, 4.01 step/s, accuracy=0.44, loss=2.55, step=16000] Valid: 99% 5632/5667 [00:13<00:00, 412.67 uttr/s, accuracy=0.38, loss=2.84] Train: 100% 2000/2000 [08:11<00:00, 4.07 step/s, accuracy=0.45, loss=2.55, step=18000] Valid: 99% 5632/5667 [00:14<00:00, 399.51 uttr/s, accuracy=0.40, loss=2.73] Train: 100% 2000/2000 [08:21<00:00, 3.99 step/s, accuracy=0.36, loss=2.65, step=2e+4] Valid: 99% 5632/5667 [00:09<00:00, 591.63 uttr/s, accuracy=0.42, loss=2.62] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [1:46:50<?, ? step/s]
Step 20000, best model saved. (accuracy=0.4213)
Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.45, loss=2.40, step=22000] Valid: 99% 5632/5667 [00:10<00:00, 546.98 uttr/s, accuracy=0.45, loss=2.52] Train: 100% 2000/2000 [08:14<00:00, 4.04 step/s, accuracy=0.48, loss=2.24, step=24000] Valid: 99% 5632/5667 [00:12<00:00, 464.67 uttr/s, accuracy=0.45, loss=2.51] Train: 100% 2000/2000 [08:10<00:00, 4.08 step/s, accuracy=0.50, loss=2.19, step=26000] Valid: 99% 5632/5667 [00:09<00:00, 612.79 uttr/s, accuracy=0.46, loss=2.42] Train: 100% 2000/2000 [08:19<00:00, 4.00 step/s, accuracy=0.52, loss=2.19, step=28000] Valid: 99% 5632/5667 [00:10<00:00, 543.84 uttr/s, accuracy=0.47, loss=2.36] Train: 100% 2000/2000 [08:24<00:00, 3.96 step/s, accuracy=0.48, loss=2.03, step=3e+4] Valid: 99% 5632/5667 [00:14<00:00, 380.97 uttr/s, accuracy=0.49, loss=2.33] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [2:29:14<?, ? step/s]
Step 30000, best model saved. (accuracy=0.4854)
Train: 100% 2000/2000 [08:21<00:00, 3.99 step/s, accuracy=0.44, loss=2.43, step=32000] Valid: 99% 5632/5667 [00:07<00:00, 704.44 uttr/s, accuracy=0.50, loss=2.26] Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.66, loss=1.72, step=34000] Valid: 99% 5632/5667 [00:09<00:00, 620.62 uttr/s, accuracy=0.50, loss=2.24] Train: 100% 2000/2000 [08:20<00:00, 4.00 step/s, accuracy=0.61, loss=1.80, step=36000] Valid: 99% 5632/5667 [00:09<00:00, 600.96 uttr/s, accuracy=0.51, loss=2.19] Train: 100% 2000/2000 [08:13<00:00, 4.06 step/s, accuracy=0.64, loss=1.74, step=38000] Valid: 99% 5632/5667 [00:12<00:00, 444.12 uttr/s, accuracy=0.53, loss=2.13] Train: 100% 2000/2000 [08:20<00:00, 3.99 step/s, accuracy=0.70, loss=1.49, step=4e+4] Valid: 99% 5632/5667 [00:10<00:00, 539.81 uttr/s, accuracy=0.53, loss=2.09] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [3:11:36<?, ? step/s]
Step 40000, best model saved. (accuracy=0.5300)
Train: 100% 2000/2000 [08:15<00:00, 4.04 step/s, accuracy=0.62, loss=1.76, step=42000] Valid: 99% 5632/5667 [00:13<00:00, 417.85 uttr/s, accuracy=0.53, loss=2.06] Train: 100% 2000/2000 [08:18<00:00, 4.02 step/s, accuracy=0.56, loss=2.04, step=44000] Valid: 99% 5632/5667 [00:11<00:00, 495.57 uttr/s, accuracy=0.55, loss=2.04] Train: 100% 2000/2000 [08:13<00:00, 4.05 step/s, accuracy=0.53, loss=1.97, step=46000] Valid: 99% 5632/5667 [00:08<00:00, 670.28 uttr/s, accuracy=0.55, loss=1.98] Train: 100% 2000/2000 [08:03<00:00, 4.14 step/s, accuracy=0.56, loss=1.95, step=48000] Valid: 99% 5632/5667 [00:16<00:00, 346.02 uttr/s, accuracy=0.56, loss=1.99] Train: 100% 2000/2000 [08:08<00:00, 4.09 step/s, accuracy=0.59, loss=1.92, step=5e+4] Valid: 99% 5632/5667 [00:10<00:00, 554.63 uttr/s, accuracy=0.56, loss=2.00] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [3:53:35<?, ? step/s]
Step 50000, best model saved. (accuracy=0.5584)
Train: 100% 2000/2000 [08:16<00:00, 4.03 step/s, accuracy=0.58, loss=1.55, step=52000] Valid: 99% 5632/5667 [00:11<00:00, 501.86 uttr/s, accuracy=0.57, loss=1.94] Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.48, loss=1.97, step=54000] Valid: 99% 5632/5667 [00:17<00:00, 327.04 uttr/s, accuracy=0.57, loss=1.93] Train: 100% 2000/2000 [08:26<00:00, 3.95 step/s, accuracy=0.81, loss=1.05, step=56000] Valid: 99% 5632/5667 [00:07<00:00, 712.35 uttr/s, accuracy=0.57, loss=1.93] Train: 100% 2000/2000 [08:18<00:00, 4.01 step/s, accuracy=0.61, loss=1.72, step=58000] Valid: 99% 5632/5667 [00:09<00:00, 567.86 uttr/s, accuracy=0.57, loss=1.94] Train: 100% 2000/2000 [08:19<00:00, 4.00 step/s, accuracy=0.73, loss=1.19, step=6e+4] Valid: 99% 5632/5667 [00:17<00:00, 313.22 uttr/s, accuracy=0.58, loss=1.93] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [4:36:19<?, ? step/s]
Step 60000, best model saved. (accuracy=0.5785)
Train: 100% 2000/2000 [08:08<00:00, 4.09 step/s, accuracy=0.67, loss=1.34, step=62000] Valid: 99% 5632/5667 [00:10<00:00, 517.80 uttr/s, accuracy=0.59, loss=1.88] Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.61, loss=1.61, step=64000] Valid: 99% 5632/5667 [00:09<00:00, 624.30 uttr/s, accuracy=0.58, loss=1.91] Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.61, loss=1.64, step=66000] Valid: 99% 5632/5667 [00:11<00:00, 511.24 uttr/s, accuracy=0.57, loss=1.91] Train: 100% 2000/2000 [08:21<00:00, 3.99 step/s, accuracy=0.72, loss=1.20, step=68000] Valid: 99% 5632/5667 [00:08<00:00, 684.44 uttr/s, accuracy=0.58, loss=1.89] Train: 100% 2000/2000 [08:17<00:00, 4.02 step/s, accuracy=0.64, loss=1.54, step=7e+4] Valid: 99% 5632/5667 [00:08<00:00, 638.93 uttr/s, accuracy=0.58, loss=1.89] Train: 0% 0/2000 [00:00<?, ? step/s] Train: 0% 0/2000 [00:00<?, ? step/s]
Step 70000, best model saved. (accuracy=0.5881)
推理
推理的数据集
import os
import json
import torch
from pathlib import Path
from torch.utils.data import Dataset
class InferenceDataset(Dataset):
def __init__(self, data_dir):
testdata_path = Path(data_dir) / "testdata.json"
metadata = json.load(testdata_path.open())
self.data_dir = data_dir
self.data = metadata["utterances"]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
utterance = self.data[index]
feat_path = utterance["feature_path"]
mel = torch.load(os.path.join(self.data_dir, feat_path))
return feat_path, mel
def inference_collate_batch(batch):
"""Collate a batch of data."""
feat_paths, mels = zip(*batch)
return feat_paths, torch.stack(mels)
主函数的推理
import json
import csv
from pathlib import Path
from tqdm.notebook import tqdm
import torch
from torch.utils.data import DataLoader
def parse_args():
"""arguments"""
config = {
"data_dir": "./Dataset",
"model_path": "./model.ckpt",
"output_path": "./output.csv",
}
return config
def main(
data_dir,
model_path,
output_path,
):
"""Main function."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[Info]: Use {device} now!")
mapping_path = Path(data_dir) / "mapping.json"
mapping = json.load(mapping_path.open())
dataset = InferenceDataset(data_dir)
dataloader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
drop_last=False,
num_workers=8,
collate_fn=inference_collate_batch,
)
print(f"[Info]: Finish loading data!",flush = True)
speaker_num = len(mapping["id2speaker"])
model = Classifier(n_spks=speaker_num).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()
print(f"[Info]: Finish creating model!",flush = True)
results = [["Id", "Category"]]
for feat_paths, mels in tqdm(dataloader):
with torch.no_grad():
mels = mels.to(device)
outs = model(mels)
preds = outs.argmax(1).cpu().numpy()
for feat_path, pred in zip(feat_paths, preds):
results.append([feat_path, mapping["id2speaker"][str(pred)]])
with open(output_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerows(results)
if __name__ == "__main__":
main(**parse_args())
[Info]: Use cpu now! [Info]: Finish loading data! [Info]: Finish creating model!
100%
8000/8000 [02:10<00:00, 53.94it/s]